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Stdphane Durandt and Luc Vinet$§ 
t Laboratoire de Physique Nucldaire, Universite de MontrCal, C.P. 6128, Succ. A, 
Montreal, Quebec, Canada H3C 3J7 
Department of Physics, University of California, 405 Hilgard Avenue, Los Angeles, 
CA 90024. USA 

Received 1 2  January 1990 

Abstract. Simple quantum mechanical systems that have natural generabations 
of superalgebras as dynamical algebras are discussed. We propose to call these 
new algebras parasuperalgebras. The symmetry generators of ‘spirrl’ particles in 
one-dimensional harmonic potentials are shown to realise an algebra endowed with 
a symmetric trilinear product. Spin-1 particles in constant magnetic fields or in 
two-dimensional harmonic potentials have analogous constants of motion that are 
described. It is also indicated how these conserved charges provide a spectrum- 
generating algebra for the parasupersymmetric generalisation of the Morse Hamilto- 
nian. These concrete models should be useful in identifying the abstract properties 
of parasuperalgebras. 

1. Introduction 

Symmetries play an important role in theoretical physics, hence the interest in the 
mathematical structures that describe them. An example of such structures is that of 
Lie superalgebras, which are found to be realised by supersymmetry generators. We 
shall describe here certain one- and two-dimensional quantum harmonic oscillators, as 
well as other related systems, that have natural generalisations of superalgebras as dy- 
namical symmetry algebras. These concrete models should be useful in identifying the 
abstract properties of those new algebras which we propose to call parasuperalgebras. 

Consider the so-called fermionic creation and annihilation operators f and ft that 
satisfy 

(1.1) 
2 {f, f t }  E f f t  + f t f  = 1 f 2  = f+ = 0. 

They are represented by the 2 x 2 matrices 

f=(; ;) f ’ = ( o  0 1  o ) .  
5 On sabbatical leave from the Laboratote de Physique NuclBaire, UniversitC de MontrBal, Monthal, 
Canada. 
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Let the operators Q and Qt be given by 

with p =  -ia/ax and W an arbitrary real function of x. These supercharges provide 
a realisation of the following superalgebra: 

with 

H = $ ( p 2  + w 2  + W’u3) u3 = [ f t ,  f]. (1.5) 

(The prime stands for differentation.) In terms of the Hermitian charges 

one has equivalently 

The operator H is interpreted as the Hamiltonian of a ‘spin-$’ particle moving in 
the potential $W2 and in the magnetic field 4W’ directed along the 3-axis. Such a 
Hamiltonian is said to  be supersymmetric [l]. 

The parasupersymmetric generalisation of the Hamiltonians (1.5) is obtained by 
replacing in the above construction the canonical fermionic creation and annihilation 
operators f t  and f by their parafermionic counterparts ut and a of order 2. These 
satisfy [2] 

and are represented by the following 3 x 3 matrices: 

Consider now [3] a new set of operators Q (Qt) and H given by 

Provided the functions Wl(x) and W2(x) satisfy 

(W,” - W,”)’ + (W, + W,)” = 0 (1.12) 
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one finds that the following parasuperalgebra is realised: 

Q2Qt + QQtQ + QtQ2 = 4QH 

Qt2Q + Q'QQ' + QQt2 = 4QtH 

[H, QI = [ H ,  ($1 = 0. 

Q3 = Qt3 = 0 

If one uses instead the Hermitian operators 

(1.13a) 

(1.13b) 

(1 .13~)  
(1.13d) 

Q1 = a(& + Qt)  Q2 = i i (Q - Qt)  (1.14) 

the above equations can be rewritten in the form 

Qi ({Qj i Q k )  - 2sjkH) + Qj ({Q,, Qi) - 2SkiH) + Qa ( { Q i i  Q j )  - 2Sij H )  = 0 (1.15') 
[H,Qi] = 0 ( i , j , k  = 1,2).  (1.15b) 

The relations (1.13) or (1.15) characterise the basic second-order parasuperalgebra. 
The trilinear product rule for the fermionic elements represents its distinctive feature. 
(Parasuperalgebras of order p would involve a ( p  + 1)-linear product.) When real 
charges are used, we immediately note that the expressions defining the anticommu- 
tation relations of the corresponding superalgebra factor out. 

For particular values of W, and W,, the parasupersymmetric H can have further 
symmetries. There are then constants of motion (in addition to the charges Q and Qt) 
that enlarge the parasuperalgebra (1.13). For example, when W, = A/z and W, = 
(A + l)/z, the corresponding Hamiltonian is found to admit a dynamical second-order 
parasuperalgebra that generalises the OSp(2,l)  conformal superalgebra [4]. Often, 
these higher symmetries allow for an algebraic resolution of the dynamics; this is the 
case for the example just quoted. 

We shall here analyse in this respect, Hamiltonians of the harmonic oscillator type. 
In section 2, we describe the second-order dynamical parasuperalgebra of the one- 
dimensional harmonic oscillator. Among the symmetry generators one has, of course, 
those of the ordinary bosonic oscillator that span a subalgebra isomorphic to the in- 
variance algebra of a free non-relativistic spinless particle, known as the Schrodinger 
algebra. In addition, there are twelve fermionic charges and four more bosonic con- 
stants. Together, all these conserved quantities form a closed algebraic set. In section 
3, we focus on two-dimensional systems. We first give the constants of motion for a 
spin-1 particle in a constant magnetic field and then establish the relation between this 
system and the two-dimensional harmonic oscillator with one parafermionic degree of 
freedom. Finally, in section 4, we indicate how the symmetry generators of the latter 
provide a spectrum-generating parasuperalgebra for the parasupersymmetric Morse 
Hamiltonian, 

2. Dynamical parasuperalgebra of the one-dimensional parasupersymmet- 
ric harmonic oscillator 

We shall be interested in situations where the functions W, and W, entering in (1.10) 
and (1.11) satisfy 

w; = w;, (2.1) 
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When this is so, the Hamiltonian (1.11) can be written as 

H = 4p2 + V(2)  + C3B(t)  

with 

and 

This operator H is of the same form as the Hamiltonian (1.5) except for the fact 
that u3 has been replaced by E,; it governs the one-dimensional motion of a ‘spin-1’ 
particle in a potential V ( z )  and a magnetic field B ( r )  directed along the third axis. 

Conditions (1.12) and (2.1) possess only two simultaneous solutions [3]; they are 

W,  = wz + p W, = W, (2.5) 

and 

with w, p and X arbitrary constants. The first, (2.5), leads to a potential V which is 
harmonic and a magnetic field B which is constant; the second, (2.6), yields for V a 
Morse potential and for E an exponential field. 

The parasupersymmetric Morse system will be considered in the final section. 
First, we shall study the symmetries of the one-dimensional parasupersymmetric har- 
monic oscillator associated with the solution (2.5) and for which the Hamiltonian and 
conserved parasupercharge are 

H = f ( p 2  + w2z2 + 2pwz + p2) + WE, (2.7) 

It will be convenient to use the following bosonic annihilation and creation operators: 

with W = wz + p. In terms of a and at, the Hamiltonian (2.7) can be re-expressed as 

H = H ,  +wC, (2.10) 

H ,  = +W{ff,fft}. (2.11) 

where 
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With H determining the time evolution of the dynamical variables, it is immediately 
possible to check that the following quantities: 

are conserved, in other words that they satisfy 

(2.12) 

(2.13) 

We now want to determine the maximal, closed and finite-dimensional algebraic set 
that can be formed out of these constants of motion. Owing to  the properties of the 
fermionic annihilation and creation operators, this set is expected to have the structure 
of a second-order parasuperalgebra. 

Let us first observe that the algebra of real 3 x 3 matrices can be endowed with 
a 2, grading. It is easy to  check that the following nine matrices form a basis for 
d(31R) :  

odd elements: a, u t ,  b =  $(uta2 - a2at ) ,  bt  (2.144 

(2.14b) even elements: 

where I is the identity operator. They have been grouped according to their grading, 
which is unambiguously determined since a and at  are by definition fermionic. (We 
may remark that b2 = - a 2 ,  C, = $[bt ,b] ,  Y = ${bt, b}.) The even elements must by 
themselves form a Lie algebra under ordinary commmutation and indeed, this algebra 
is immediately found to be SU(2) @ U( 1) @ R. 

The bosonic sector of the invariance algebra of our parasupersymmetric harmonic 
oscillator Hamiltonian H will of course possess as subalgebra, the invariance algebra 
of the ordinary bosonic harmonic oscillator Hamiltonian H,. This algebra is known as 
the one-dimensional Schrodinger algebra [5]; it is isomorphic to  the invariance algebra 
of the free bosonic Hamiltonian and is denoted by Sch(1). It is generated by those 
constants Xk,[,m,n which are of first and second order in CY and a t ;  i.e. H,, I and 

2 
I ,  2,  at , C,=$[at,a],  Y = i { a t , a }  

( 2 . 1 5 ~ )  

(2.15b) 

In order to  get the complete bosonic subalgebra of the invariance algebra of H ,  we 
must still supplement the above generators with those constants, quadratic in the 
fermionic annihilation and creation operators, that correspond to the even sector of 
gl(3,R). This means adjoining 

(2 .16~)  

(2.16b) 

(2 .16~)  

and Y ,  to the Sch(1) basis {H,, P, P t ,  A, At,  I } .  (The proper explicit time dependences 
have been introduced so that all generators are conserved.) The full bosonic invariance 
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algebra is then identified as being Sch(1) CB S U ( 2 )  @ U ( 1 ) .  The commutation relations 
are easily computed and the non vanishing commutators are given by: 

[H,, A] = 2wA [H,, At] = -2wAt [At,  A] = 4wH, (2 .17~)  

(2.17b) [At,  PI = 2wPt 
[Pt ,  PI = W I  (2.17~) 
[L' ,  Lj] = iqjkLk i, j, Q = 1 , 2 , 3 .  (2.17d) 

The fermionic generators must necessarily involve one of the four odd basis el- 
ements of g1(3,R), and closure requires them to be at  most linear in the bosonic 
creation and annihilation operators. (This last point will be obvious when we present 
the fermionic structure relations.) It will be convenient to organise these fermionic 
charges in irreducible multiplets with respect to the S U ( 2 )  generated by L,, i = 1 ,2 ,3 .  
In this respect, one notes that both 

[H,, PI = WP [H,, Pt] = -wPt 
[ A ,  Pt]  = -2wP 

(2.18)  

transform as 2-spinors under this S U ( 2 ) .  Indeed 

One also observes that 

[Y, T,I = F, [Y,T,] = T,. (2.20) 

It follows that all the other admissible fermionic operators can themselves be cast as 
2-spinors. In addition to T, and F, one has 

&, = PT,  
S, = PtT, 3, = P'T,. ( 2 . 2 1 ~ )  

The transformations properties of these constants under the bosonic symmetry oper- 
ations are given by 

[Ho, &,I = w&, [H,,S,I = -US, [H,, T,I = 0 (2 ,22a)  

[A ,&, ]=  0 [ A ,  S,I = - 2 4 ,  [ A  IT,] = 0 (2.22b) 

Q, = PT, 

[At &,I = 2wS, [At,S,] = 0 [At ,  T,] = 0 (2.22c) 

[P,Q,I= 0 [ P , S,] = -wT, IP,T,I = 0 (2.22d) 

[Pt ,  &,I = wT, [Pt,S,] = 0 [Pt,T,] = 0 (2.22e) 

[Y ,&,I = Q, [ Y , S , ]  = 3, [ Y  ,T,I = F, ( 2 . 2 2 f )  

[L', &,I = - ~ ~ L u Q u  [L',S,] = -$u;usu [L',T,] = -$uLuTu. (2.22g) 

The commutation relations involving Q, and are obtained from the above 
formulae by effecting the substitutions Q c-+ Q ,  S c-) 3, T U rl'. 
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There now only remains to give the products of the fermionic basis elements. Let 
us introduce the symbol {A, ,  A,, ... , A,} to represent the n-linear symmetric product 
of A1,A, ,  ..., A,: 

(2.23) 

with S, the symmetric group of n objects. In particular we have 

{A, B ,  C }  = A{ B ,  C} + B{ C,  A} + C{ A, B}.  (2.24) 

Since we are using parafermionic variables of second order and since these satisfy cubic 
identities, we expect that (2.24) is the right product to take between odd elements in 
order to  define our algebrat. We shall now complete the list of the structure relations 
of the dynamical parasuperalgebra of the parasupersymmetric harmonic oscillator by 
stating what all these trilinear products of the parafermionic charges are equal to. In 
what follows cl, = = 1 and p ,  v, p = 1,2:  

( 2 . 2 5 ~ )  

(2.25b) 

( 2 . 2 5 ~ )  

t This product has already been used in the definition of second-order parasupersymmetric quantum 
mechanics. 
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(2.25d) 

(2.25e) 

The relations of the form { A ,  l?, C} or { A ,  I?, c} can be obtained from the above 
using 

{A ,  I?, c} = - {A,  B, C }  

{ A ,  B, C }  = - { A ,  B ,  e}. 
( 2 . 2 6 ~ )  

(2.26b) 

These identities are easily proven with the help of (2.22f). 
In summary, the one-dimensional parasupersymmetric harmonic oscillator has 

been found to admit a 22-dimensional dynamical parasuperalgebra. The operators 
Ho,Y ,P ,P t ,A ,A t , I  and L,,  i = 1 ,2 ,3  defined in (2.11),(2.14b),(2.15) and (2.16) 
provide a basis for its bosonic subalgebra while the charges Q,, Q,, S,, g,, T,, and 
T,, p = 1 , 2 ,  introduced in (2.18) and (2.21), span its parafermionic sector. The struc- 
ture relations are given in (2.17), (2.22) and (2.25). This second-order parasuperalge- 
bra generalises the dynamical superalgebra (described in [6]) of the supersymmetric 
one-dimensional harmonic oscillator. 

3. Parasupersymmetries of spin-1 particles in cyclotron motion 

We shall now draw from the preceding section to describe the parasupersymmetries of 
spin-1 particles moving in a constant magnetic field B (taken along the 3-direction). 
The Hamiltonian that governs the dynamics in the plane perpendicular to the magnetic 
field is given by 

H = b (a: + a;) + BE, (3.1) 

with ai = pi  -Ai and [ai, aj] = ieijB, i, j = 1 , 2 .  We have taken the charges of the 
particles to be one. 

Observe now that the following correspondence: 

d 
dx (3.2) a1 H p = -i- a2 H -(Bz + P )  
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can be effected consistently as [rl, r,] and [p, - (Bz  +/?)I are both equal to  iB. Under 
these substitutions H gets transformed into 

an expression which is immediately recognised as the Hamiltonian (2.7) of our parasu- 
persymmetric one-dimensional harmonic oscillator (with w replaced by B) .  From the 
parasupercharge (l/&)[p - i(Bz + /?) ]a given in (2.8) and associated with the above 
harmonic oscillator Hamiltonian, we may now simply obtain a parasupercharge for 
the cyclotron motion Hamiltonian (3.1) by using (3.2) in the reverse direction. The 
parasuperalgebra (1.13) will thus also be realised with H given as in (3.1) and with 

(3.4) 
1 Q = - (A ,  + ir,) a. Jz 

This can of course be checked directly. 
It is, moreover, clear that all the other conserved charges and parasupercharges of 

the one-dimensional harmonic oscillator can similarly be converted into constants of 
our cyclotron motion. This, however, does not provide all the symmetry generators of 
the Hamiltonian (3.1). For instance, space translations combined with gauge transfor- 
mations leave H invariant. This entails the conservation of the so-called Lippmann- 
Johnson [7] constants 

c, = A, - B z ,  c, = r2 + B z ,  (3.5) 

which satisfy 

[Ci, Cj] = - iqj  B 

and hence [C,,H] = 0. 

1 

If one defines 

r ,  = -(rl fir,) Jz 
and similarly 

1 
C, = -(Cl kiC,)  Jz 

one has 

[Ci, r j ]  = 0 i , j  = 1 ,2  (3.6) 

(3.7) = A- 

(3.8) 

Then, the following quantities 

(3.9a) 

(3.9c) 
(3.9b) 
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are easily seen to have vanishing total time derivative when the time evolution is 
controlled by H .  

It turns out that a basis for the maximal finite-dimensional dynamical parasu- 
peralgebra of this problem can be obtained by adding to the set {II,, C,, Tp, 7') all 
quadratic monomials that can be formed out of its elements. This assertion is best 
inferred by observing that the two-dimensional harmonic oscillator whose Hamiltonian 
is 

(3.11) Hho = 3 ( p z  +pi)  + 5 1 (5 1 B 2  ) 2 + + i B C 3  

and the cyclotron problem possess isomorphic dynamical parasuperalgebras. 
Let us choose a gauge in which 

A = ( - i B z 2 ,  i B z , )  . (3.12) 

In this case 

7r+ = ma+ 

c+ = mfft_ 

ff* = s(al f ia,) 

7r- = mffi 
c- = &iff- 

with 
1 

and 

(3.13a) 
(3.13b) 

(3.14a) 

(3.14b) 1 
f f .  , = - JB (pi - i fBz,)  [ai, a9 = s j j  i, j = 1 , 2 .  

Since Hh, can be written as 

Hho = $ B  ({a+? ff!> + {a- ,  a!}  + c3) (3.15) 

we see that 

H = Hh, + ({ff+) a i >  - {a - )a t_} )  + (3.16) 

At t = 0, the dynamical algebra of Hho consists, as we know, of all quadratic poly- 
nomials in a*, aL (or equivalently T,, C,), Tp(t = 0) and p,,(t = 0). From (3.16), 
we see that H is actually an element of this algebra; it therefore shares with Hho the 
same dynamical algebra. The only difference will lie in the explicit time dependence 
of the conserved generators if one chooses Hh, instead of H as the generator of time 
translations. It is a simple exercise to figure out these dependences. In fact, note that 
{cu-,~!} - { a , , a ~ }  = zlp2 - z,p,; we thus have 

(3.17) 

I t  follows that quantities X ( t )  = e-IHtX(0)eiHt, conserved under H ,  will be converted 
into quantities xh,(t) = exp[-iHh,t]X(0) exp[iHhot], conserved under H,,, by a time- 
dependent spatial rotation: 

X ( t )  = exp[iB(M2 - &/fl)t]Xh,(t) exp[-iB(Mz - C3/2)t]. (3.18) 

The structure relations of the second-order dynamical parasuperalgebra of (ei- 
ther one of) the systems discussed in this section, naturally extend those of the one- 
dimensional harmonic oscillator dynamical parasuperalgebra given in section 2. They 
can be found in [8] and will not be reproduced here. 

H = Hh, - frB(2kf2 - E,) 2M2 = Z1pz - Z2pl .  
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4. Spectrum-generating algebra of the parasupersymmetric Morse Hamil- 
tonian 

The parasupersymmetric Morse Hamiltonian has already been encountered in section 
2. Besides the harmonic oscillator, it is the only other parasupersymmetric Hamilto- 
nian that can be written in the form H = frp2 + f (  W;" + W,") + C,Wl with W: = W;, 
It is obtained by substituting 

w, = -+he-" + fr(h - 1) w, = w, + 1 (4.1) 

(see (2.6)) in H ,  one thus gets: 

d2 2 H ,  = -- d22 + fh2(e-x - 112 +  he-"^, + f .  (4.2) 

It is known that the dynamics of the bosonic [9] and supersymmetric [lo] (one- 
dimensional) Morse problems is amenable to an algebraic treatment. In fact the bound 
states of the bosonic, respectively supersymmetric, Morse Hamiltonians are in corre- 
spondence with the basis vectors of Sp(l) ,  respectively OSp(1, l), unitary representa- 
tions. We shall here show that the spectrum of the parasupersymmetric Hamiltonian 
H ,  is similarly related to representations of the dynamical parasuperalgebra of the 
two-dimensional harmonic oscillator treated in the last section. 

Let No = a{al + .!a2. From now on we shall take B = 2. A set of labels for the 
quantum states of the Hamiltonian 

H = f (p:  + p i )  + + (2: + 2;) + C3 (4.3) 

is provided by the following eigenvalue equations: 

In obtaining the range of values for m, we have used the fact that M ,  = 3(aia2 + 
a!)~,) ,  M2 = $i(ala ,  - a;a,) and M3 = f ( a l a ,  - a!a2) form an SU(2) algebra with 

M 2  = M,2 + M,2 + M i  = $ N o ( N o  + 2). (4.5) 

The equations (4.4) also define a basis for the representation space of the dynamical 
parasuperalgebra of H .  We shall now indicate how they further provide the eigen- 
functions of the parasupersymmetric Morse Hamiltonian H,. 

Instead of no,  we can equivalently use as quantum number the eigenvalue h = 
no + 26 + 1 of the operator 

fi = No + 2x3 + 1. (4.6) 

The basis states will thus be identified as lh,6,mz) and (4.4a) replaced by 

Alh,b,m,) = hlh,6,mz)  h = - 1 , 0 , 1 , 2 , * . . *  (4.7) 
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In terms of the polar coordinates 

M2 = -i i8/8$. Equation ( 4 . 4 ~ )  is then immediately integrated and one gets 

Separating the variables in 

one finds 

x 1  = rcos4  x 2  = r s i n 4  (4.8) 

(4.9) 2imz # (r,41h, 6, m 2 )  = e g h , 6 , m z ( T ) *  

( r , $ I 3 l h , b 4  = h(r,4Ih,5,mz) (4.10) 

The solutions to  this equation can be obtained either directly or by applying ladder 
operators on the ground-state wavefunctions. They are given by 

\Eh ,B,ma(r)  = C6?'2m2e-rJ2 F(m2 - $ ( h  - 25 - l), 2m2 + 1; r2 )  (4.12) 
with C, normalisation constants and F a confluent hypergeometric function. 

The eigenfunctions of the Morse Hamiltonian can now be obtained from (4.12) by 
a mere change of variable. Indeed, setting r2 = he-" in (4.11) and multiplying this 
equation on both sides by r2 yields 

HMgh,6,m,(x) = + Q ( h 2  + 1>] \Eh,6,mz(2) (4.13) 
with H M  as given in (4.2). 
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